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Abstract. Rivers are not isolated systems but interact con-
tinuously with groundwater from their confined headwaters
to their wide lowland floodplains. In the last few decades,
research on the hyporheic zone (HZ) has increased appreci-
ation of the hydrological importance and ecological signif-
icance of connected river and groundwater systems. While
recent studies have investigated hydrological, biogeochem-
ical and ecohydrological processes in the HZ at bedform
and reach scales, a comprehensive understanding of process-
based interactions between factors operating at different spa-
tial and temporal scales driving hyporheic exchange flows
(HEFs) at reach scale and larger is still missing. Therefore,
this review summarizes the factors and processes at catch-
ment, valley, and reach scales that interact to control spatial
and temporal variations in hyporheic exchange flows. By us-
ing a multi-scale perspective, this review connects field ob-
servations and modelling studies to identify the process driv-
ing patterns and dynamics of HEF. Finally, the influence of
process interactions over multiple spatial scales is illustrated
in a case study, supported by new GIS analyses, which high-
lights the importance of valley-scale factors to the expression
of HEF at the reach scale. This conceptual framework will
aid the development of approaches to interpret hyporheic ex-
change across scales, infer scaling relationships, and inform
catchment management decisions.

1 Introduction

Hyporheic zones (HZs) are unique components of river sys-
tems that underpin fundamental stream ecosystem functions
(Ward, 2016; Harvey and Gooseff, 2015; Merill and Ton-
jes, 2014; Krause et al., 2011a; Boulton et al., 1998; Brunke
and Gonser, 1997; Orghidan, 1959). At the interface between
rivers and aquifers, hyporheic zones are the expression of
vertical and lateral connection of rivers with floodplains and
the underlying aquifers and are defined by the interchange of
surface and ground waters through hyporheic exchange flows
(HEFs) (Malard et al., 2002; Elliott and Brooks, 1997).

HEF plays a significant role in biogeochemical cycling
(e.g. carbon and nutrient availability and transformation),
ecological food webs, and habitat for diverse organisms
(Krause et al., 2011a; Boulton et al., 1998; Brunke and
Gonser, 1997). HEF is driven by potential and kinetic en-
ergy gradients near the streambed that change hydraulic head
and force surface water to flow into, through, and out of the
bed (Boano et al., 2014; Cardenas et al., 2004; Elliott and
Brooks, 1997). Both hydrostatic (i.e. elevation head) and hy-
drodynamic (i.e. velocity head) forces of the hydraulic head
contribute to HEF variations within rivers and floodplains
(Boano et al., 2014; Harvey and Gooseff, 2015). Turbulence
(i.e. gravel bed substrate) and biological processes (i.e. bio-
turbation) also can drive HEFs, but are less studied in steams
and rivers (Boano et al., 2014). The hierarchical and hetero-
geneous nature of river and floodplain systems creates com-
plex spatial and temporal patterns of exchange flows (Carde-
nas, 2008; Worman et al., 2007).
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Catchment and river characteristics vary markedly along
river networks affecting the groundwater and surface wa-
ter flows that drive HEF. These variations include (i) the
differences in hydraulic potential created by topography-
driven groundwater flows (i.e. discharge patterns follow to-
pographic lows) and the temporal and spatial scales of the
stream system from upstream to downstream, vertically and
laterally, i.e. flood spates, overbank flows, etc. (Minshall
et al., 1985; Newbold et al., 1982, 1981); (ii) continental
groundwater flows and local discharge areas on rivers de-
pend on both large- and small-scale topography as demon-
strated by spectral analysis (Marklund et al., 2008; Wor-
man et al., 2007, 2006); and (iii) complex geomorphologi-
cal structures (armouring, bedforms, bars and other lateral
variability within channels, braiding, meanders, floodplain
deposits etc.). Therefore, understanding and predicting HEF
dynamics requires consideration of the hydrological, topo-
graphical, hydrogeological, anthropogenic, and ecological
processes operating across a spectrum of spatial and tempo-
ral scales (Ward, 2016).

Previous work has identified multi-scale processes affect-
ing HEF, but has focused primarily on individual processes
and controls within river corridors (Ward, 2016; Harvey and
Gooseff, 2015; Boano et al., 2014). Existing information has
not been sufficiently synthesized to assess the multiple fac-
tors and characteristics that control HEF at catchment scales
across geographic regions (Table S1, S2, S3 in the Sup-
plement). Similarly, earlier reviews have furthered our un-
derstanding of the ecological and functional significance of
HZs (Krause et al., 2011a; Boulton et al., 1998; Brunke and
Gonser, 1997), the range of mechanisms and biogeochemical
implications that influence HEF (Boano et al., 2014; Merill
and Tonjes, 2014; Dent et al., 2001), and the perspectives
on and challenges to interdisciplinary river research (Datry
etal., 2017; Ward, 2016; Harvey and Gooseff, 2015). Despite
this intensive investigation of HEF processes, there has been
little investigation of hyporheic processes at the catchment
scale rather than at individual geomorphic units (Ward, 2016;
Harvey and Gooseff, 2015; Krause et al., 2011a). Recently,
Ward (2016) recognized that hyporheic science is still facing
the challenge of enabling cross-site comparisons of findings.
One of the reasons is the absence of conceptual frameworks
to translate patterns of hyporheic flows across scales, enable
multi-scale assessment of process controls, and enable iden-
tification of common variables.

Therefore, this paper reviews the state of knowledge of
HEF: drivers of HEF and process interactions. For the drivers
of HEF, Sects. 3-7 discuss five main drivers, hydrologi-
cal, topographical, hydrogeological, ecological, and anthro-
pogenic, and how spatial and temporal variability in these
drivers controls HEF. In the context of multi-scale interac-
tions, Sect. 8 discusses how these drivers interact to cre-
ate spatial and temporal heterogeneity in HEF direction and
magnitude. Both sections highlight knowledge gaps that are
important in terms of fundamental understanding and man-
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Figure 1. [llustration of catchment complexity: scales and features
that influence hyporheic exchange flows. Spatial changes in surface
topography, land use and vegetation drive geomorphological and
hydrological changes at valley and reach scale. At catchment scale,
variations in surface topography shape valleys and channel types.
Feature 1 refers to confined valleys characterized by straight chan-
nels, meandered and braided, and the following floodplain features:
scour holes and gravel splays (a). The straight channel presents in-
channel cascades (b) and geomorphic features. Feature 2 refers to
braided channel morphology with multi-thread channels, an undu-
lating floodplain of bars and islands. In-channel geomorphic units
are several types of bars (e), such as mid and lateral bars, and vege-
tated islands (f). Feature 3 represents a sinuous—meandering flood-
plain with occasional oxbow lakes and backwater swamps (m, n, k)
and in the channel: longitudinal bar (c), transverse bar (d), counter-
point bar (h), pond-riffle (i), point bar (1), chute channel (j). Fea-
ture 4 indicates an anabranching valley with multi-thread channels
including abandoned channels (0) and backwater swamps (p). The
channel can be quite deep and includes islands covered with vege-
tation.

agement of hyporheic zones. The review follows a hierarchi-
cal spatial approach, from reaches to catchment, and provides
a structure upon which to explore the individual and interac-
tion effects of factors on HEF and to upscale and downscale
across spatially and temporally variable hyporheic processes
(Figs. 1, 2).

2 Concepts and terminology

The term “hyporheic zone” has been defined variously in the
literature, and some confusion still exists within the wider re-
search community about the extent and nature of the HZ. To
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Figure 2. Conceptual diagram of the key drivers of the hyporheic
exchange across scales. This diagram can be read from the centre
to the outer part and vice versa, as indicated by the black arrows.
Dashed lines represent hidden boundaries between scales. Colour
gradient, from light to dark, follows the hierarchical approach of this
review from the channel scale to the reach scale to the catchment
scale.

help facilitate the integration and presentation of results from
a large number of studies spanning a range of disciplines in
this review, we use a simplified and standardized terminology
for the HZ and HEFs.

Herein, we follow the “flexible” definition of HZ, as re-
ported by Ward (2016): “...saturated subsurface including
flow paths that originate from and return to surface wa-
ter where interactions occur within a temporal scale rele-
vant to the process of interest, and processes of interest oc-
cur continuously from the stream-subsurface interface to the
hyporheic-groundwater continuum.” In terms of hyporheic
exchange, we recognize that a continuum of hyporheic flow
paths is associated with different hydrologic residence times
(Boano et al., 2014; Cardenas, 2008; Worman et al., 2007).

In the context of multi-scale exchange, HEF is related to
large-scale groundwater—surface-water exchange (GSE), but
the terms are not synonymous (Ward, 2016). HEF is an in-
terchange between surface and subsurface waters occurring
over short timescales (i.e. minutes to weeks), whereas GSE
flows occur at much larger spatial scales and with consid-
erably longer timescales for flows to return to the stream
(i.e. months to millennia) (Toth, 1980). Consequently, this
review considers large-scale GSE in addition to HEF. At the
scale of HEF, GSE can be considered as a unidirectional ex-
change (i.e. losing causes the river to recharge the aquifer,
and gaining causes the aquifer to discharge into the river).

www.hydrol-earth-syst-sci.net/22/6163/2018/
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HEF and GSE can act in opposite directions (Stonedahl et al.,
2012; Cardenas and Wilson, 2006). For example, a reach un-
der losing conditions due to groundwater recharge can have
superimposed HEFs occurring simultaneously (Fox et al.,
2014; Stonedahl et al., 2012).

Additionally, we refer to hyporheic “extent” when the HZ
expands or contracts in the horizontal (“lateral extent”) or
vertical (“vertical extent”) directions, respectively, and use
the term “bank storage exchange” for the case where lateral
HEF between the river and floodplain is induced by the rise
and fall of river water levels (Cranswick and Cook, 2015;
Pinder and Sauer, 1971). Finally, vegetation (i.e. vegetation
density, riparian, and in-channel vegetation) is considered in
this review as the main ecological factor that influences HEF
(Heppell et al., 2009; Corenblit et al., 2007). Although not
reported in this paper, we acknowledge that other ecolog-
ical factors such as hyporheic freshwater invertebrates and
biofilm have a major role in interacting with HEF (Peralta-
Maraver et al., 2018).

3 Hydrological drivers

Hydrological drivers influence HEF by changing surface wa-
ter and groundwater flow regimes and the distributions of hy-
draulic head. In this section, we provide a summary of how
groundwater and river-level fluctuations control the spatial
and temporal distribution of hydraulic heads to affect HZ and
HEF paths at reach (Sect. 3.1), valley, and catchment scales
(Sect. 3.2).

3.1 Groundwater and stream discharge at reach scale

HEF responds systematically to changes in hydrological con-
ditions at the reach scale. Together, river flow regime and
event-based fluctuations of groundwater levels control reach-
scale hyporheic exchange by changing the distributions of
hydraulic head (Boano et al., 2014).

Several studies report that seasonal (i.e. spring—summer
and summer—fall transition) and event-based changes in the
gradient between river water and groundwater levels cause
the HZ to expand or contract (Malzone et al., 2016, 2015).
In both losing and gaining flow conditions, the volume of
the hyporheic zone contracts under a relatively small flux,
while hyporheic residence times decrease moderately (Fox
et al., 2016). In particular, during gaining conditions, steep
stream-ward hydrologic gradients limit the extent of the
HZ (Fox et al., 2014; Wondzell and Gooseff, 2013; Carde-
nas, 2009; Malcolm et al., 2005; Storey et al., 2003). Con-
versely, the extent of the HZ and the hyporheic residence
time increase during floods (Drummond et al., 2017; Zimmer
and Lautz, 2014; Swanson and Cardenas, 2010; Wondzell
et al., 2010). This enlargement is caused by the increases
in stream stage and velocity, which in turn increase the ex-
change rate during the flood and drive water farther from

Hydrol. Earth Syst. Sci., 22, 6163-6185, 2018



6166

the channel (Bhaskar et al., 2012; Malcolm et al., 2004).
Conversely, inconsistent patterns of HZ have been observed
in response to changes to stream discharge (Ward et al.,
2013; Wondzell, 2006). In mountainous streams, the HZ has
been found to expand in small streams at lower base flow
discharge (Q < 0.01 m?s~!) compared to higher-discharge
streams (Wondzell, 2011). This behaviour has been inter-
preted to result from increasing hydrostatic head gradients
associated with flow around channel morphological elements
at low flow, such as development of lateral channels and flow
around bars (Wondzell, 2006).

Consistently with the above findings, HEF paths do not re-
spond uniformly to stream discharge and groundwater flow
at reach scale. Groundwater discharge reduces HEF flux
and flow path residence time and length, while stream dis-
charge alone does not significantly affect HEF length and
residence time (Schmadel et al., 2017; Gomez-Velez et al.,
2015; Boano et al., 2008; Cardenas and Wilson, 2007). In
spatially heterogeneous reach morphology, these responses
are exacerbated by the presence of reach morphological
features (Dudley-Southern and Binley, 2015; Zimmer and
Lautz, 2014) (Fig. 4 in Schmadel et al., 2017). Schmadel
et al. (2017) observed that flow paths generated by large hy-
draulic gradients (i.e. bedforms) are less sensitive to changes
in hydrological conditions than those generated by the larger
context of the valley gradient (Schmadel et al., 2017).

Such complex interactions between groundwater and river
regimes generally makes it difficult to identify the dominant
drivers of HEF without considering multiple spatial scales.
To develop frameworks with improved spatio-temporal res-
olution of HEF, comprehensive understanding of the valley
hydrological condition is required.

3.2 Reach-scale HEF in the context of the larger
landscape

Interactions at the reach scale between the factors described
in Sect. 3.1 often results in heterogeneous responses of HEF
that require the consideration of processes at a larger scale
(i.e. catchment).

HEF and residence time in river reaches are affected by
the relationship between hillslope structure and hillslope wa-
ter table (Hoagland et al., 2017; Torres et al., 2015; Godsey,
2014; Jencso et al., 2010). To date, model simulations have
shown that diel fluctuations of hillslope water tables affect
both the length and the residence time of HEF. These fluctu-
ations, which occur due to the temporal lag between stream
and aquifer responses, produce a wide range of hydraulic gra-
dients (Wondzell et al., 2010, 2007) and affect HEF by sev-
eral orders of magnitude. Longer hyporheic flow paths result
in locations with larger hydraulic conductivity, large stream
amplitude, and large hillslope amplitude with respect to the
stream (Schmadel et al., 2017, 2016).

Given the diverse geomorphology of river valleys and the
seasonal responses of hillslope water table fluctuations to
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large-scale controls (e.g. precipitation), the relationship be-
tween dynamic hydrological valley conditions and HEF re-
mains an area of active research (Schmadel et al., 2017,
Bergstrom et al., 2016; Schmadel et al., 2016; Nippgen et al.,
2015; Wondzell and Gooseff, 2013; Jencso et al., 2009).
Recent studies have started to consider precipitation inputs
to the catchment to enable cross-catchment comparisons of
HEFs (Hoagland et al., 2017; Jasechko et al., 2016). The
drivers discussed in Sect. 3.1 and 3.2 vary within and among
catchments depending on catchment topography, geology,
and finally geography (Hoagland et al., 2017; Jasechko et al.,
2016). For example, steep headwater catchments respond
rapidly to rainfall because of their small storage capac-
ity (Penna et al., 2016; Gomi et al., 2002; Woods et al.,
1995). Rainfall is strongly correlated with seasonal ground-
water fluctuations in catchments dominated by transmissive
soils (Bachmair and Weiler, 2012). Conversely, in headwa-
ter catchment with low-permeability soils, rainfall is only a
secondary control, after topography, on the response time of
groundwater levels (Rinderer et al., 2016). On the other hand,
lowland catchments usually have a slower response to rain-
fall (days to weeks), although heavy precipitation events can
cause local flooding (Monincx, 2006).

Finally, the relationship between groundwater, stream dis-
charge and HEF is dynamic in nature, depending on the
cross-scale interaction of hydrological gradients. Thus, HEF
findings at the reach scale may not be representative when
major changes, e.g. seasonal variations, occur in valley- or
catchment-scale characteristics.

4 Topographical drivers

Topography is one of the primary drivers of spatial HEF vari-
ability. From bedforms to catchments, topographic gradients
cause nested hyporheic flow paths (Worman et al., 2007).
In order to understand how HEF varies spatially within the
catchment and how these variations in turn affect tempo-
ral variations, we discuss HEF at scales within the channel
topography (individual bedforms and bedform sequences:
Sect. 4.1), within a valley hydrological and geomorpholog-
ical context (bedforms in valley context: Sect. 4.2), and then
within the catchment (Sect. 4.3).

4.1 In-channel bedforms

Over recent decades, a range of studies have demonstrated
that HEF is proportional to the hydraulic head gradients in
the streambed. Both hydrodynamic and hydrostatic forces
generated by in-channel bedforms have large effects on the
variability of HEF from centimetre to metre scale. However,
in reaches where stream velocities are low relative to to-
pographic variability, HEF will be mostly driven by hydro-
static head gradients defined by the water surface topography.
In this section, we provide a concise summary of the main

www.hydrol-earth-syst-sci.net/22/6163/2018/



C. Magliozzi et al.: Toward a conceptual framework

effects on HEF by single bedforms (i.e. steps, riffles, and
bars) and bedform sequences (i.e. step-pool, pool-riffle). We
considered bedforms that induce hydrodynamically driven
HEFs, i.e. ripples and dunes (Sect. 4.1.1), and larger topo-
graphic features, i.e. steps, riffles, and bars, that contribute to
hydrostatically driven HEF (Sect. 4.1.2) (Boano et al., 2014).

4.1.1 HEF generation by in-channel bedforms

Head pressure gradients created by the channel bedforms
drive advective pore water flow into, through, and out of
the bed (Elliott and Brooks, 1997). Current knowledge of
hyporheic fluxes and their spatio-temporal variability in
submerged bedforms has been obtained from simulations
(Boano et al., 2014; Irvine et al., 2014; Trauth et al., 2014,
Stonedahl et al., 2013; Janssen et al., 2012; Cardenas and
Wilson, 2007; Elliott and Brooks, 1997), laboratory experi-
ments (Fox et al., 2014; Tonina and Buffington, 2007), and
field experiments (Zimmer and Lautz, 2014; Gordon et al.,
2013; Lautz and Fanelli, 2008). Bedforms develop charac-
teristic shapes due to the interplay of streamflow and bed
sediment transport. Dunes and ripples are characterized by a
smooth water surface profile (Packman et al., 2004) implying
that the spatial variation of water surface topography is min-
imized and the pressure profile strongly depends on dynamic
pressures (Marion et al., 2002; Elliott and Brooks, 1997).

In the case of hydrostatically driven HEF, the flow is a
function of the head gradient, the size, and the hydraulic
conductivity around the bedform (Hester et al., 2008; Goos-
eff et al., 2006). High channel slope will normally re-
sult in deeper HEF and higher HZ depth (Hester et al.,
2008; Gooseff et al., 2006). Hyporheic flow structure is
controlled by spatial relationship of bedforms to high- and
low-permeability regions of the streambed (Stonedahl et al.,
2018; Pryshlak et al., 2015; Sawyer and Cardenas, 2009;
Packman et al., 2004; Salehin et al., 2004). Riffle-scale ex-
change, for example, is possible only when high permeability
materials surround the stream channel. Water upwells where
permeability or depth of gravel decreases in the direction of
streamflow and where the longitudinal bed profile is concave
(Buffington and Tonina, 2009; Elliott and Brooks, 1997; Har-
vey and Bencala, 1993a). Water downwelling occurs where
permeability or depth of gravel increases, in the direction of
streamflow, or where the longitudinal bed profile is convex
(Buffington and Tonina, 2009; Elliott and Brooks, 1997; Har-
vey and Bencala, 1993a). Modelling studies have shown that
flow paths and exchange rate vary in the alluvium around
riffles across seasons and with the extent of groundwater dis-
charge (Stonedahl et al., 2018, 2012; Storey et al., 2003).

Gravel bars are also functionally equivalent to riffle bed-
forms for HEF; the hydrologic retention in gravel bars is
strongly influenced by bar structure and stream water levels
(Trauth et al., 2015; Tonina and Buffington, 2007; Marzadri
et al., 2010; Boulton et al., 1998). Unlike fully submerged
features, recent findings by Trauth et al. (2015) suggest that
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HEF in partially submerged gravel bars decreases with in-
creasing stream discharge as the hydraulic head gradients
across the bedform decrease, leading to long residence times
under low-flow conditions.

In conclusion, an individual in-channel bedform can have
significant effects on HEF and on its residence time distribu-
tions. More complex interactions occur across the spectrum
of topographic features (Stonedahl et al., 2010).

4.1.2 In-channel bedform sequences

The complexity of nested hyporheic flows will increase with
the number and diversity of bedforms in the channel. Local-
scale variation in bedform size will drive the longitudinal pat-
terns of upwelling and downwelling, along with multi-scale
distributions of HEF at reach scale (Stonedahl et al., 2015,
2013, 2010; Gooseff et al., 2006).

Step-pool morphology behaves differently than pool-riffle
and dune-like bedforms (Hassan et al., 2015; Marzadri et al.,
2010; Tonina and Buffington, 2007). HEF will develop
around a pool-riffle sequence only where the lateral hydraulic
gradients (i.e. from the banks to the channel center) are
less than the longitudinal hydraulic gradient between the up-
stream and downstream ends of the riffle (Storey et al., 2003).
In gravel bed pool-riffle sequences, significant hydrostatic
forces across the channel, high permeability of sediment, and
low submergence time generate substantial large-scale hy-
porheic flow (Tonina and Buffington, 2011, 2007; Buffington
and Tonina, 2009; Wondzell and Swanson, 1996). A detailed
case study on an upland, gravel-bed river with a riffle-pool
bedform sequence showed that, although the expected pat-
tern of downwelling and upwelling conditions were gener-
ally observed along the bedform sequence, seasonal varia-
tions in hyporheic fluxes occurred because of asynchronous
local ground water recharge relative to flow regime (Gariglio
et al., 2013). At the riffle—pool scale, this is consistent with
previous studies reporting seasonal variations in hyporheic
temperature dynamics, with stream topography, sediment
stratification, and groundwater interaction all affecting local
upwelling and downwelling in riffle—pool systems (Krause
et al., 2013; Hannah et al., 2009).

Dune-ripple complexes are less influenced by hydrostatic
forces than riffle—pool sequences (Tonina and Buffington,
2011); gradients are much lower than for riffle—pool and
step—pool sequences and little affected by spatial and tempo-
ral changes in water surface elevation. Simulations have also
shown that dunes contribute more than meanders and bars to
reach-scale HEF (Stonedahl et al., 2013). Further, the volume
of water exchanged and the hyporheic residence time across
bedforms is not linearly additive (Stonedahl et al., 2013).
Instead, hyporheic exchange is maximized when one topo-
graphic feature dominates (Stonedahl et al., 2013). In low-
land rivers, the lower slope, finer sediments, and more con-
stant flows favour the development of dune-ripple sequences
(Elliott and Brooks, 1997; Marion et al., 2002) characterized
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by high relative submergence and smooth water surface pro-
files (Packman et al., 2004). Under these conditions, the spa-
tial variation of water surface topography is minimized and
HEEF is induced primarily by dynamic pressure variations.

These findings suggest that in-channel bedforms often
control HEF, although these local exchange flows are still
strongly modulated by stream and groundwater dynamics at
reach and valley scale.

4.2 Alteration of in-channel bedform-induced HEF by
valley hydrology

The patterns of HEF generated by individual bedforms and
bedform sequences are altered by the hydrodynamic condi-
tions of the valley. Longitudinal valley gradients create hy-
drostatic head gradients that influence water moving across
and down valleys and thus HEF (Harvey and Bencala,
1993a).

Schmadel et al. (2016) suggested that valley slope pri-
marily controls the timing of HEF while cross-valley slope
and down-valley slope determine net gaining or losing con-
ditions. When bedforms are analysed with respect to chan-
nel gradient, it can be seen that gentle slopes of lowland
rivers generate slower currents with deeper flows, lower rela-
tive roughness, and less valley confinement, resulting in less
bedform-induced exchange (Tonina and Buffington, 2007)
(Fig. 3). For example, dune-ripple streams that occur in low-
land rivers typically exhibit less spatial and temporal vari-
ability in water surface elevation than riffle—pool streams
(Tonina and Buffington, 2011). In higher-gradient valleys,
the flow is predominantly down-valley and spatial varia-
tions of hydraulic gradients are paired with changes in cross-
sectional areas of the valley and with the hydrodynamic head
gradients generated by in-channel bedforms to induce water
downwelling into the HZ (Wondzell, 2012; Cardenas et al.,
2004). In this setting, hydrogeological properties can have a
major role in controlling valley hydrologic exchange: Ward
etal. (2012) and Anderson et al. (2005) observed that in steep
and constrained sections of their study area, the HEF in step-
pool sequences is limited by the underlying bedrock rather
than by hydraulic gradients.

In conclusion, both positive and negative relationships be-
tween hyporheic zone extent and down- and cross-valley gra-
dients have been reported in the literature, suggesting that de-
tailed resolution of hydraulic gradients and knowledge about
the valley setting are necessary to understand controls on
HEF (Ward et al., 2012).

4.2.1 Valley confinement

The extent of valley confinement indicates different process
domains and determines the capacity of the river to adjust
in planform (Table 1). Several studies have linked HEF to
valley confinement and shown that HZ depth is restricted,
HEF is reduced, and hyporheic residence time is decreased
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in highly confined valleys (Buffington and Tonina, 2009;
Wright et al.,, 2005; D’angelo et al., 1993; Stanford and
Ward, 1993) (Table 1). While GSE and HEF are both lim-
ited in confined valleys, bedrock fractures and fissures may
allow some hyporheic exchange, depending on their degree
of connectivity with the aquifer (i.e. bedrock and colluvial
channels in straight and sinuous planforms) (Gurnell et al.,
2016; Graham et al., 2010; Freer et al., 2002; McDonnell
et al., 1997, 1996). Certainly, the coupling of small changes
in water table elevation and bedrock topography can have
a large impact on the hyporheic flows (Oxtobee and No-
vakowski, 2002). For example, HEF transport is expected to
be more uniform in lowland rivers, where the flat land sur-
face and shallow aquifers with low transmissivity favour a
topographically controlled water table, than in upland envi-
ronments where bedrock outcrops may confine HEF and in-
fluence cross-valley hydraulic gradients (Ward et al., 2012).

Bedrock outcrops at valley margins can have opposing
impacts on HEF. On the one hand, they can limit the infil-
tration of the stream water into the subsurface and restrict
the hyporheic zone (Kasahara and Wondzell, 2003). Indeed,
bedrock outcrops can constrain valleys where steep positive
vertical hydraulic gradients result from discontinuities of su-
perficial deposits permeability and shallow bedrock (Ibrahim
et al., 2010). In this case, the HEF can be limited to su-
perficial layers of the riverbed. On the other hand, the ir-
regularities of bedrock projections favour changes in the al-
luvium volume (Buffington and Tonina, 2009), thus driv-
ing stronger hyporheic exchange from the subsurface to the
stream and preventing deeper GSE. In fact, the interchange
between bedrock and alluvial valleys favours HEF, because
of increased downwelling and upwelling where a thin layer
of alluvial deposits overlies shallow bedrock (Ward et al.,
2012; Wondzell, 2012).

Conversely, in unconfined valleys, floodplain sediments
typically represent a mosaic of coarse and fine sediments that
originate from hillslopes, bed material (i.e. bedload), and sus-
pended sediment deposited during overbank flooding, within
the context of channel adjustment over time (e.g. migration
and avulsion) (Nanson and Croke, 1992) (Table 1). Tonina
and Buffington (2009) classified channel types by examin-
ing how bedforms generate hydrodynamic pressure varia-
tions and drive hyporheic exchange (Fig. 3). Generally, un-
confined channels have smaller vertical hydraulic gradients
and discharges than confined channels, caused by the lower
channel gradients and by the heterogeneity of sedimentary
deposits (Ibrahim et al., 2010). We synthesize available in-
formation on underlying geology, in-channel sediment, and
valley confinement at valley and reach scales in Table 2,
where potential HEF response is indicated for different chan-
nel planforms, geomorphic units, and floodplain characteris-
tics.

In conclusion, empirical and modelling studies not only
suggest the dominance of hydrologic exchange flows by
small geomorphic features but also that lateral exchanges of

www.hydrol-earth-syst-sci.net/22/6163/2018/
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Table 2. Case study about the River Tern, UK (Sect. 8). The table describes the 10 reach sections obtained by dividing the river channel
into sinuosity units based on changes in the axis of the overall planimetric course. The units that differed in sinuosity by more than 10 %
were considered separate reaches. Surface geology and valley type are evaluated with respect to the extent of lateral hyporheic exchange.
The sections are enumerated and described from upstream to downstream. Geology information was extracted from the British Geological

Survey website.

Reaches  Underlying geology In-channel sediment Description Channel  Sinuosity
gradient (%)
1 Sandstone-conglomerate bedrock Min grain is clay. Max grain is Unconfined valley on both banks. The 0.001 1.089
of Triassic period. Surficial ge- gravel. Mixed argillic and arena- river is meandering and the riparian
ology, sedimentary substrate of ceous grains. vegetation is abundant.
quaternary period. Alluvial, fluvial,
and glacigenic sediments
2 Mudstone and sandstone bedrock of ~ Predominant min grain is sand and  Partially confined valley due to indus- 0 0.487
Triassic period. Surficial geology, max grain is gravel. Dominant grain  trial plants and homes on the right bank
sedimentary substrate of quaternary  is sand. of the river. The river is sinuous, with
period. Alluvial and glaciofluvial — Arenaceous — rudaceous grains. the presence of a big meander and abun-
sediments. dant riparian vegetation
3 Bedrock: mudstone and sandstone  Min grain mud and clay and max Partially confined valley due to homes 0.052 0.537
interspersed. Sedimentary geology grain is gravel. Dominant grains on the right bank of the river. The river
of Triassic period. Dominance of sand and mud. Argillic — rudaceous is overall sinuous, with the presence of
fluvial sediments. grains. small meander and very abundant ripar-
ian vegetation.
4 Bedrock: sandstone. Surficial geol-  Min grain is mud, max grain is Mostly unconfined valley, presence of 0.261 1.962
ogy, sedimentary substrate of trias-  gravel. Dominant grain is sand. homes on the right bank of the river.
sic period. Dominance of fluvial de-  Arenaceous — grains. The river is meandering and there is
posits. abundant riparian vegetation.
5 Surficial geology of quaternary pe- Min grain is clay, max grain is Mostly unconfined valley, presence of 0.03 0.718
riod. Dominance of glaciofluvial gravel. Dominant grain is sand. homes on the left bank of the river. The
deposit. Arenaceous — rudaceous grains. river is forming small meanders and
abundant riparian vegetation.
6 Surficial geology of quaternary pe- Min grain is clay, max grain is Unconfined valley on both banks. The 0.011 0.6
riod. Dominance of glaciofluvial gravel. Dominant grain is sand. river is meandering and riparian vegeta-
and glacigenic deposit. Arenaceous — rudaceous grains. tion is present throughout its length but
mostly on the left bank.
7 Surficial geology of quaternary pe- Min grain is clay, max grain is Unconfined valley on both banks and 0.06 1.87
riod. Dominance of glaciofluvial gravel. Dominance of clay with presence of a small bridge. The river
and glacigenic deposit. gravel. Mixed argillic is meandering and riparian vegetation
andrudaceous grains. is present throughout its length, albeit
more scarce with comparison to previ-
ous sections.
8 Surficial geology of quaternary pe-  Min is clay and max is gravel. Mostly unconfined valley, presence of 0.05 1.06
riod. Dominance of glaciofluvial Mixed arenaceous and argillic industrial plant on the left bank of the
and alluvial deposit. grain. river. On the left bank there are two
ponds. The river is forming small mean-
ders, and riparian vegetation is present.
9 Surficial geology of quaternary pe- Min is clay and max is gravel Unconfined valley on both banks. The 0.003 0.943
riod. Dominance of glaciofluvial Predominance of sand grains. river is meandering and riparian vegeta-
and alluvial deposit. tion is present and abundant on the left
bank. Presence of pond.
10 Surficial geology of quaternary pe- Min grain is clay and max grain is  Unconfined valley on both banks.The 0.012 0.826

riod. Dominance of glaciofluvial
and fluvial deposit.

gravel with presence of silt as well.
Mix of arenaceous and rudaceous
grains with peat and argillic.

river is mostly sinuous and riparian veg-
etation is abundant on both banks.
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Figure 3. Representation of channel planforms. Sinuosity influences water exchange within a river segment. Hyporheic exchange increases

with sinuosity due to hydraulic gradients in the meander neck (Sect. 4.2.2).

water affect movement of material and energy between rivers
and floodplains.

4.2.2 Channel planform

As with valley confinement (Sect. 4.1.2), channel planform
is an indicator of lateral HEF interactions with floodplains.
Sinuosity is often used as a measure of channel complexity
and has been found to be directly correlated with lateral hy-
porheic exchange in meander bends, and in the parafluvial
zone beneath the streambanks (Kiel and Bayani Cardenas,
2014; Cardenas, 2008; Boano et al., 2006; Wroblicky et al.,
1998; Holmes et al., 1996). Sinuosity establishes head gra-
dients across meanders that induce HEF (Boano et al., 2008,
2006) and influences the amount of water exchanged within
ariver segment (Han and Endreny, 2013; Gomez et al., 2012;
Cardenas, 2009; Brunke and Gonser, 1997).

High-sinuosity rivers (e.g. multi-thread or single/sinuous
meandering) are less prone to a reduction of the hyporheic
area with depth, and maintain the HZ under both losing
and gaining conditions (Cardenas, 2009) (Table 1). Meander
planimetry drives hyporheic flows and influences hyporheic
residence times by creating differences in the elevation head
of surface water around a meander bend, with spatial and
temporal variations as meanders evolve (Stonedahl et al.,

www.hydrol-earth-syst-sci.net/22/6163/2018/

2013; Boano et al., 2008; Revelli et al., 2008; Boano et al.,
2006). Naturally forced by the longitudinal head gradient,
the hyporheic exchange flows through the meander neck as
river water infiltrates into the hyporheic zone at the upstream
half of the meander and returns to the river along its down-
stream half (Kiel and Bayani Cardenas, 2014; Boano et al.,
2006; Cardenas et al., 2004). This pattern becomes more
complex with the inclusion of floodplain sediment and chan-
nel geomorphic features. Lateral hyporheic residence time
is short in areas with coarse floodplain sediments and high
sediment hydraulic conductivity and increases in meanders
with fine-textured sediments (Boano et al., 2006). In multi-
thread planforms, simulations have identified the importance
of hyporheic flow paths beyond the active channels toward
secondary channels and across the floodplain (Kasahara and
Wondzell, 2003) (Table 1). Along laterally unconfined val-
leys, meander creation, extension, and cutoff allow signifi-
cant river adjustment and river-floodplain interactions, caus-
ing both in-stream and off-channel geomorphic features to
drive lateral hyporheic exchange (Boano et al., 2006).

In conclusion, studies of valley setting, confinement, and
sinuosity suggest that valley topography provides important
evidence about disconnection within catchments and can be
potentially used as a qualitative and quantitative predictor of
HEF. As demonstrated by the above studies, the source of

Hydrol. Earth Syst. Sci., 22, 6163-6185, 2018
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spatial complexity of HEF is not only the result of single
geomorphic structures but of the topographical structure of
the valley and of the whole catchment.

4.3 HEF in the catchment topography context

Studies have suggested that catchments with large surface
areas have greater hyporheic exchange fluxes (Bergstrom
et al., 2016; Laenen and Bencala, 2001; Harvey and Wagner,
2000). Greater variation in water stage correlates on average
to greater hyporheic fluxes, but few direct observations are
available to support or refute this assumption.

The catchment topographic slope defines the direction of
flow by creating discontinuities and localized groundwater
flow paths (Jencso and McGlynn, 2011; Jencso et al., 2009;
Wérman et al., 2006; Winter, 1998). Emerging upscaling
models have started incorporating the information of the
catchment area, channel network structure, and head vari-
ations of surface topography. These models include (i) the
first-order control of water inputs and groundwater head dis-
tribution (Caruso et al., 2016; Jencso and McGlynn, 2011;
Laudon et al., 2007), (ii) indications of subsurface flow
(Caruso et al., 2016; Jencso and McGlynn, 2011; Jencso
et al., 2009; Worman et al., 2006), and (iii) discretizing the
catchment into sub-catchments and identifying topograph-
ically contributing recharge and discharge areas (Worman
et al., 2007, 2006). These studies indicate that linking topo-
graphic complexity to HEF is likely to be an important prior-
ity area of research. Patterns of upwelling and downwelling
within reaches were observed to occur where the stream pro-
file is concave and convex, respectively, and were used to
predict patterns of HEF in high-gradient headwater moun-
tain streams (Anderson et al., 2005). While upwelling zones
do not show a significant trend with increasing catchment
area, the length of downwelling zones increases with stream
size, spacing of channel slope, and decrease of water surface
concavity (Anderson et al., 2005).

These findings should encourage interdisciplinary efforts
to generate supporting evidence that links HEF across the
continuum of headwater, mid-order, and lowland streams as
a result of systematic changes in hydro-geomorphological
characteristics along the stream network.

5 Hydrogeological drivers

Geology affects both the distribution of groundwater in
aquifers and HEF flows. In this section hydrogeological ef-
fects on HEF are summarized into (i) channel sediment im-
pacts on bedform-induced HEF (Sect. 5.1), (ii) floodplain
sediment impacts on GSE between the valley aquifer and the
channel (Sect. 5.2), and (iii) bedrock and aquifer type im-
pacts on valley geomorphology (Sect. 5.3).
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5.1 Channel sediment and bedform-induced HEF

Sedimentological properties strongly control HEF at reach
scale. Water flowing through the river bed is affected by sed-
iment grain size, sediment heterogeneity, and depth, promot-
ing spatially diverse hyporheic exchange (Packman et al.,
2004). Hyporheic exchange is enhanced in coarser sediments
(Packman et al., 2004). As mentioned in Sect. 1, high ve-
locity gradients and turbulence generated at the surface of
coarse-sediment beds can also increase diffusion processes,
which can produce considerable exchange even when the bed
surface is flat and no flows are induced by bed topography
(Marion et al., 2008; Packman et al., 2004). The presence of
high hydraulic conductivity layers in the streambed increases
dispersive mixing between hyporheic water and groundwa-
ter (Hester et al., 2013) and creates preferential HEF, either
short or long paths, by controlling the ability of the sedi-
ment to support advective pumping (Pryshlak et al., 2015;
Cardenas, 2009, 2008; Salehin et al., 2004). Dye injections
have shown that hyporheic flow patterns are controlled by the
spatial relationship of high- and low-permeability regions of
the streambed, resulting in faster near-surface transport, shal-
lower penetration, and a shorter mean residence time (Sale-
hin et al., 2004). Furthermore, longer hyporheic flow paths
are generated in streams with greater connectivity of sedi-
ment strata (Pryshlak et al., 2015), but connectivity can be re-
duced by the accumulation of fine sediment that clogs pores
(Hartwig and Borchardt, 2015; Bardini et al., 2012; Brunke
and Gonser, 1997). To date, few studies have addressed the
effect of sediment heterogeneity on HEF variability at scales
larger than the bedform, although recent works have shown
strong impact of sand and gravel deposits on HEF at the reach
scale (Zhou et al., 2014) and identified sediment heterogene-
ity as one of the main drivers of lateral connectivity as well
(Pryshlak et al., 2015). In river segments dominated by gravel
beds, such as in confined high-energy braided rivers, the hy-
draulic conductivity is generally high but also highly vari-
able because it depends on the sorting of sediments in the
floodplain and on the amount of silt and clay present (Table 1
and Fig. 3). Highly permeable riverbed sediments allow sur-
face water to penetrate easily into the HZ, causing vertical
hydraulic gradients to change strongly with local sediment
permeability (Packman and MacKay, 2003; Wroblicky et al.,
1998; Vaux, 1968).

5.2 Hydrogeology in river and floodplain type

Channel planforms respond not only to changes in regional
physiography and hydrology (Sect. 4.2) but also to sediment
loads (Table 1) (Gurnell et al., 2016; Nanson and Croke,
1992). Differences in particle sizes in river planforms are
caused by longitudinal, lateral, spatio-temporal variation of
river flows and sediment supply (Bridge, 2009; Baldwin and
Mitchell, 2000). Sediment permeability allows varying hy-
porheic residence time responses according to whether de-
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posits are finer or coarser (Hester et al., 2016; Pryshlak et al.,
2015; Azinheira et al., 2014; Brunke and Gonser, 1997)
(Fig. 3).

Braided channels (Sect. 4.2) occur across a range of val-
ley slopes, depending on the grain size of the bed material
in transport, and present either a pool-riffle morphology or a
bar-riffle morphology (Gurnell et al., 2016). HEF tends to be
very dynamic and spatially varying in these river types; steep
head gradients between channels create cross-valley head
gradients that control the location and direction of flow paths
through the HZ (Fig. 3, Sect. 4.2) (Malard et al., 2002; Ward
and Stanford, 1995). This transverse exchange evolves with
migration and river sediment transport processes (Stonedahl
et al., 2010; Boano et al., 2006; Kasahara and Wondzell,
2003).

In sinuous, medium-energy meandering floodplains, HEF
is also usually driven by variations in head gradients (advec-
tion processes), which are greater than diffusive transport by
2 or more orders of magnitude (Elliott and Brooks, 1997,
Larkin and Sharp, 1992). This type of floodplain typically
presents vertically accreted fine sediments (silt and clay).
These local low-permeability units and thick sequences of
unconsolidated deposits become more compact and less per-
meable with depth (Winter, 1998); thus, they are charac-
terized by localized groundwater flows and restricted HEF
(Angermann et al., 2012; Krause et al., 2012; Stonedahl et al.,
2012). In lowland settings with abundant fine sediment load,
reduction of groundwater upwelling due to low sediment
conductivity layers causes surface water downwelling and in-
duces horizontal hyporheic flow into shallow streambed sedi-
ments above low conductivity strata (Angermann et al., 2012;
Stonedahl et al., 2012). Spatial variations in the thickness of
fluvial-alluvial deposits increase local gradients around clay
lenses, and create locally confined conditions (Ellis et al.,
2007).

All of these studies indicate that the thickness of super-
ficial deposits controls the extent and rate of hyporheic ex-
change (Tonina and Buffington, 2011; Buffington and Ton-
ina, 2009; Anderson et al., 2005).

5.3 Hydrogeology in the catchment: bedrock and
aquifer type

From reach to regional scale, geology affects the distribu-
tion of groundwater in aquifers and the spatial variability of
GSE and HEF via the aquifer geometry and hydrogeological
properties. Lithologic type and structure, weathering history
of bedrock, and the type of aquifer impact HEF by altering
the distribution of hydraulic conductivities (Fox et al., 2014;
Gomez-Velez and Harvey, 2014; Angermann et al., 2012;
Krause et al., 2011b; Hiscock, 2007; Woessner, 2000; Mor-
rice et al., 1997; Winter, 1998).

Bedrock exerts vertical and lateral constraints on river
forms and processes, by controlling the interaction of GSE
and HEF subsurface flows and defining valley confine-
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ment (Sect. 4.1.2). Different relationships exist depending
on whether the bedrock is consolidated or semi-consolidated
and the primary and secondary porosity of rock deposits
(i.e. pores and fractures) (Binet et al., 2017; Hoagland et al.,
2017; Jencso et al., 2010; Sear et al., 1999). For example,
hyporheic studies in chalk catchments have shown the impor-
tance of groundwater in supporting GSE at catchment (Lap-
worth et al., 2009; Grapes et al., 2005), valley, and reach
scales (Griffiths et al., 2006; Grapes et al., 2005), although
vertical hyporheic exchange in these systems is often re-
stricted by local low-conductivity superficial deposits (Allen
et al., 2010; Pretty et al., 2006) (Sect. 5.1). In addition to the
characteristics of the bedrock, the degree of confinement of
the aquifer due to impermeable layers would prevent or limit
GSE and HEF to local interactions (Gurnell et al., 2016).

In confined aquifers, which are separated from the sur-
face by geological strata with low hydraulic conductivities
(i.e. aquitards), GSE would likely be prevented (Winter,
1998). HEF would also be prevented by the lack of highly
porous alluvium and the low permeability of the bedrock
(Buffington and Tonina, 2009; Kasahara and Wondzell,
2003). In confined bedrock, colluvial channels, and confined
alluvial channels, GSE and HEF are limited by the local
structure of the local sediment (e.g. coarse or fine particles)
and the rock structure (e.g. continuous or discontinuous con-
finement) (Table 7.5 in Gurnell et al., 2016). In unconfined
aquifers, generally groundwater is easily conveyed in all di-
rections, leading to high opportunity for both vertical and lat-
eral HEF exchange (Winter, 1998). However, in unconfined
alluvial channels, GSE and HEF can be prevented or limited
to local interactions depending on local sediment (e.g. coarse
or fine particle size) (Table 7.5 in Gurnell et al., 2016).

In conclusion, HEF from reach to catchment scales is
highly related to bedrock lithology and superficial sediment.
The complexity of geological properties at the catchment
scale results in spatio-temporal variations in HEF, in the
channel and throughout the river network. A point upstream
in the catchment may exhibit HEF dynamics driven by en-
tirely hydrogeological processes compared to the catchment
outlet. These differences are especially heightened in catch-
ments with mixed land use and anthropogenic pressures (e.g.
dams) for which comprehensive understanding is required of
the timescales of water and solute flux with different geolo-
gies (Kunz et al., 2017; Sun et al., 2015; Gooseff et al., 2007).

6 Ecological drivers

Vegetation has long been known to exert a strong control
on land surface hydrology by moderating streamflow and
groundwater recharge (Sect. 3.2). By altering hydrological
processes on channel banks, floodplains, and the wider catch-
ment, vegetation feeds back on the temporal variability of
HEF and likely increases the spatial heterogeneity of this
ecological-hydrological relationship. This section describes
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in-channel, bank, and floodplain vegetation by focusing on
three key types: in-channel vegetation (Sect. 6.1), large in-
channel wood (Sect. 6.2), and riparian vegetation (Sect. 6.3).

6.1 In-channel vegetation

In-channel vegetation controls HEF directly, through
channel-scale flow resistance, and indirectly, through sedi-
ment and streambed permeability (Jones et al., 2008). A va-
riety of herbs, shrubs, and trees grow in stream channels, in-
crease bed roughness, and alter flow velocities. They pro-
duce a mosaic of hydrodynamic conditions with low-flow
velocities in vegetation patches and high flow velocities be-
tween patches (Corenblit et al., 2007). Vegetation also al-
ters stage—discharge relationships that affect hyporheic flow,
where higher water levels and faster in-channel flows are
maintained in mid-summer (Heppell et al., 2009; Harvey
et al., 2003). Jones et al. (2008) demonstrated that in-channel
vegetation restructures hyporheic flow patterns by creating
temporally dynamic deviations of hydraulic gradients. In-
channel vegetation increases the friction factor (Harvey et al.,
2003) and creates low-flow areas that increase water resi-
dence time (Kjellin et al., 2007; Ensign and Doyle, 2005;
Worman and Kronnis, 2005; Salehin et al., 2003). In par-
ticular this aspect has been observed in streams with exten-
sive vegetation where flow can decrease to nearly zero within
dense vegetation stands (Ensign and Doyle, 2005; Salehin
et al., 2003). Further, the reduction of flow velocity within
plant stands leads to increased sediment deposition and the
development of plant-mediated sediments that are typically
finer-grained than the bed material and have more organic
material and lower permeabilities (Corenblit et al., 2007),
which also reduce HEF.

In conclusion, both field and laboratory studies have sug-
gested that vegetation shapes transient storage in stream
channels, even though there are still difficulties in under-
standing the feedback of induced HEF at the reach scale.
The role of vegetation on patterns of HEF at larger spatial
scales is still unexplored. In particular, bank vegetation needs
to be considered in terms of hydrological connection be-
tween riparian vegetation and the stream (Duke et al., 2007)
(Sect. 6.3).

6.2 In-channel wood

Within stream channels and valleys, accumulations of wood
drive physical complexity of the river network by altering
flow resistance, channel-floodplain connectivity, and verti-
cal and lateral accretion of floodplain (Davidson and Eaton,
2013; Wonhl, 2013; Phillips, 2012; Jeffries et al., 2003; Mutz,
2000; Sear et al., 1999; Piégay and Gurnell, 1997).

Wood affects channel hydraulics and induces deeper HEF
by increasing the variability in vertical head and imposing
greater hydraulic resistance (Lautz and Fanelli, 2008; Mutz
et al., 2007; Mutz, 2000). Wood generally has a compara-
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ble effect to other in-channel structures (Sect. 7.1) and chan-
nel roughness elements (Sect. 4.1.2) by driving water into
the subsurface, where it travels along short hyporheic flow
paths (Boano et al., 2006; Lautz et al., 2006). The impact of
wood on HEF varies with valley topographic gradient (low-
land and upland), groundwater dynamics (gaining and los-
ing), and sediment transport (Gregory et al., 2003; Jeffries
et al., 2003). In lowland rivers, where flow velocity is slow
and gradient low, wood induces less HEF and also has less
of an effect on spatial patterns of HEF (Krause et al., 2014).
Temporally, Wondzell (2006) observed that, although low-
land streams are sensitive to changes in wood delivery, and
wood decreases HEF at short timescales, large-scale channel
adjustments reverse the effect of natural wood removal over
longer timescales, causing higher HEF fluxes. Over the long
term, wood removal results in longer mean hyporheic resi-
dence times, which impacts many hyporheic functions, in-
cluding temperature, nutrient retention, and oxygen concen-
trations (Sawyer and Cardenas, 2012; Stofleth et al., 2008).
In upland rivers, wood typically creates steeper head gradi-
ents that drive hyporheic flow paths (Krause et al., 2014).

Interactions between flow and wood also produce spatial
heterogeneity in deposits of sediments and organic matter
(Osei et al., 2015Db, a; Sear et al., 2010; Latterell et al., 2006;
Naiman et al., 2000; Gregory et al., 1991). Fine and organic-
rich sediments are retained, eventually driving higher spa-
tial heterogeneity in HEF (Sects. 5.2 and 7). However, Kasa-
hara and Hill (2006) observed little impact of a large wood-
constructed step on oxygen concentrations within the hy-
porheic zone, presumably due to siltation (Parker et al., 2017;
Wohl et al., 2016; Menichino and Hester, 2014).

At the valley scale, wood delivery depends on short- and
long-term patterns of land use and geomorphology, often es-
tablishing floodplain geomorphology as the dominant con-
trol on wood storage in river systems (Benda and Bigelow,
2014). Indeed, one of the variables influencing wood trans-
port and storage is valley geometry. Several studies have doc-
umented the importance of woody debris in shaping channel
patterns and floodplain evolution in a variety of environments
(Collins et al., 2012; Millington and Sear, 2007; Abbe and
Montgomery, 2003; Jeffries et al., 2003; Collins et al., 2002;
Piégay and Marston, 1998; Sear et al., 2010). However, rela-
tively few studies have examined patterns of wood distribu-
tion relative to valley geometry or HEF responses to morpho-
logical changes induced by large wood at valley scale (Wohl
and Cadol, 2011).

6.3 Riparian vegetation

At valley scale, riparian vegetation is well known to shape
patterns of GSE and HEF by affecting riverbank filtration
and altering water-table elevations via transpiration (Jones
et al., 2008; Chen, 2007). Vertical and lateral hyporheic flow
patterns are characterized by non-linear spatial variations
with both vegetation composition (i.e. species) and evapo-
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transpiration (ET) (Larsen et al., 2014; Wondzell et al., 2010;
Martinet et al., 2009). The ET from riparian vegetation can
increase hyporheic fluxes by 1-2 orders of magnitude at
timescales of weeks to months (Larsen et al., 2014).

The effect of ET on HEF is especially significant in low-
energy environments, where ET drives the flow of water
through sediment into the root, comparable to molecular dif-
fusion and varies at different times of the year (Bergstrom
et al., 2016; Larsen et al., 2014; Iturbe and Porporato, 2004;
Porporato et al., 2004). Conversely, in high-energy environ-
ments where turbulent mixing and bedform-induced pump-
ing are very rapid (Sect. 4.1.1 and Fig. 3), the effect of ET
will be lower. On the diurnal timescale, evapotranspiration
changes groundwater gradients, with riparian zone vegeta-
tion creating the lowest water table in the afternoon, pro-
moting surface water infiltration and hyporheic exchange
(Wondzell et al., 2010; Loheide and Lundquist, 2009). Duke
et al. (2007) observed a seasonal correlation between transpi-
ration and streamflow with effects on hyporheic gradients.
During winter, the correlation is very strong and high wa-
ter tables and hillslope vegetation lead to negative hyporheic
gradients and to high hydraulic head at the bank surface.
Conversely, in summer the stream channel has less surface
flow and less active exchange within the HZ, and deep flow
paths are very important in this period (Duke et al., 2007).
At valley scale, the effect of riparian vegetation has been
observed to greatly influence water inputs to the stream by
controlling channel complexity, resulting in increased reten-
tion by increasing residence time and contact between stream
water and the hyporheic zone. This hydrological interaction
has been studied in arid catchments (i.e. Sycamore Creek,
a Sonoran Desert stream; Schade et al., 2005, 2002) where
soils are often highly impermeable and the presence of ri-
parian vegetation is dependent on streamflow and shallow
groundwater tables (Schade et al., 2005, 2002; Stromberg
et al., 1996). Most of these studies have been performed in
arid environments, and information on the effects of ET on
HEF in humid environments is lacking.

In conclusion, the direct and indirect effects of ripar-
ian vegetation on HEF at floodplain or catchment level are
poorly studied relative to effects of morphology and ground-
water recharge or discharge, although the studies mentioned
above provide a foundation for evaluation of groundwater-
dependent riparian vegetation on the HZ.

7 Anthropogenic drivers

Humans have extensively modified many river systems, and
these changes impact the natural factors and processes that
control HEF. Alterations to catchments, valleys, and river
channels affect the hydrology (e.g. river stage fluctuations),
hydraulics (e.g. altering vertical hydraulic gradients), and
physiographic setting (e.g. geology, morphology). Effects of
three main anthropogenic factors on HEF will be discussed:
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(1) river stage fluctuations due to in-channel structures and
(i1) valley-spanning dams, and (iii) changes in sediment de-
livery and channel complexity due to land use and land man-
agement.

7.1 In-channel structures

Channel structures (e.g. weirs, log dams) that control and
change flow conditions by obstructing the flow and dissi-
pating energy have positive and negative impacts on HEF
(Daniluk et al., 2013; Hester et al., 2008; Lautz et al., 20006).
Upstream of the control structure, a decrease in channel ve-
locities and bedform size, combined with an increase in water
depth and channel cross-sectional area, is usually observed
and associated with a reduction of turbulent hyporheic ex-
change in coarser sediments (Blois et al., 2014; Boano et al.,
2010; Jin et al., 2009) and advective HEF by ripples, dunes,
and bars (D’angelo et al., 1993). Downstream of control
structures, a decrease in sediment loads, scour, and turbu-
lent fluxes in coarser sediment are usually observed (Hes-
ter et al., 2009). Weirs induce HEF upstream of the obstruc-
tion, flow beneath it, and cause upwelling on the downstream
side (Jin et al., 2009; Hester and Doyle, 2008). The effect of
these structures is complicated and may vary under differ-
ent flow conditions. Conservative tracer experiments at the
reach scale have shown that the cumulative effect of mul-
tiple weirs increased the cross-sectional area of the surface
stream and of the transient storage zones behind weirs, while
HEF decreased (Rana et al., 2017). As a consequence, mul-
tiple weirs reduce short and fast HEF while inducing long
and slow-moving hydrostatically driven hyporheic flow paths
(Rana et al., 2017).

Hence, the evaluation of potential effects of channel-
spanning structure on HEF requires rigorous analysis with
respect to channel flow variation. The various effects of these
measures are complicated and include disruption of down-
stream flux of sediment, with critical consequences for the
alluvial structure and on HEF at streambed or meander scale
(Poole and Berman, 2001).

7.2 Dams

Large valley-spanning obstructions such as dams can affect
HEF by ponding water, disrupting sediment transport, al-
tering vertical hydraulic gradients and varying flow dynam-
ics (Schmadel et al., 2016; Gerecht et al., 2011; Fritz and
Arntzen, 2007; Arntzen et al., 2006). For example, the daily
stage fluctuation from hydroelectric dams regulates the size
of the hyporheic zone and the magnitude and frequency of
HEF (Sawyer et al., 2012; Gooseff et al., 2006; Lautz et al.,
2006; Harvey and Bencala, 1993b). In case of dam-induced
water levels changes, a temporal lag occurs between stream
stage and aquifer water; HEF is transient and penetrates sev-
eral metres into the riparian aquifer with residence times of
hours (Sawyer et al., 2009). Schmadel et al. (2016) predicted
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HEF and residence times from the timing and magnitude of
diel fluctuations and valley slope, and found that minimal
exchange occurs when the magnitude of stream level fluctu-
ations coincides with the hillslope water table, while max-
imum exchange occurs when stream stage is out of phase
with the hillslope and therefore larger amplitudes in stream
and hillslope occur. As a consequence, the effects of dams on
HEF vary with channel planform and streambed topography.
For example, in river systems characterized by large alluvial
channels and unconfined aquifers, the relationship between
dam-induced changes in river stage and HEF is character-
ized by hysteresis (Fritz and Arntzen, 2007). Therefore, HEF
is not only dependent on changes in river stage but also on the
difference between river and aquifer elevations (Vogt et al.,
2010). As river stage varies, there is a fast response of hy-
porheic flows which rapidly change with the head difference
within the HZ, and a slower response of HEF with changes
in elevation head of the near aquifer (Fritz and Arntzen,
2007). Additionally, the lower hydraulic conductivity near
the surface of the HZ, caused by accumulation of sediment
in the alluvial matrix and often characterizing alluvial chan-
nels (Sect. 5.2), might restrict the changes in hydraulic pres-
sure over the first centimetre of river sediment (Fritz and
Arntzen, 2007). In river systems characterized by small chan-
nel sizes and complex streambed morphology, differences
in HEF within the subsurface upstream and downstream of
dams have been attributed to the overall hydraulic behaviour
around the dam and to the changes in topography induced by
the dam (Hester et al., 2009; Fanelli and Lautz, 2008). Stud-
ies using thermal sensors have reported that upstream and
downstream pools created by ponding and channel degrada-
tion, respectively, have the potential to drive bedform-scale
exchange flow. Temperature results suggest that the highest
hyporheic exchange rates occur downstream of dams, while
HEF is limited in upstream pools where fine sediment de-
posits yield low hydraulic conductivities (Fanelli and Lautz,
2008).

7.3 Land management and use: impacts on sediment
delivery, channel complexity, and hydrological
regime

Land cover and management have an impact on HEF through
several pathways, as they impact on the quality (i.e. sedi-
ment delivery and channel complexity) and quantity (i.e. dis-
charge, infiltration, ET) of groundwater and surface water
(Santos et al., 2015; Carrillo-Rivera et al., 2008). The rela-
tionship between land use, sediment delivery, and HEF re-
mains an area of active research, but in general both ur-
banization and agriculture significantly modify channel mor-
phology, streambed sediment size, and hydraulic conductiv-
ity by competing effects from increasing fine sediment in-
puts (which decrease streambed hydraulic conductivity) and
stream discharge (which increases advective HEF) (Emanuel
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etal., 2014; Ryan et al., 2010; Kasahara and Wondzell, 2003;
Morrice et al., 1997; D’angelo et al., 1993).

First, decreased porosity and permeability of streambed
sediments, e.g. due to increased sediment loads from agricul-
ture, is usually connected to a decrease in in-channel storage
and hyporheic exchange flows (Packman and MacKay, 2003;
Brunke and Gonser, 1997). Secondly, water abstraction often
includes pumping of both stream surface water and ground-
water, which can increase groundwater levels and thereby
increase groundwater discharge to streams and/or decrease
stream water flow to groundwater (Winter, 1998). Lower wa-
ter tables generally reduce the vertical extent of the HZ by
increasing water losses from the stream and reducing the hy-
draulic gradients that drive HEF (Hancock, 2002). Not only
the magnitude but also the length of the hyporheic exchange
flows are affected: tracer experiments conducted on several
reaches within a single land use type showed a reduction of
transient storage as a function of the surrounding land use
due to lower geomorphological complexity in agricultural
streams, promoting the formation of low-flow zones but re-
ducing HEF (Gooseff et al., 2007). However, little research
has been carried out on HEF in urban rivers where low mor-
phological complexity and anthropogenic factors have im-
pacted streams substrates and planforms (Drummond et al.,
2017; Gooseff et al., 2007; Grimm et al., 2005; Groffman
et al., 2005; Walsh et al., 2005).

8 Case study: the River Tern

While previous sections described how individual factors in-
fluence HEF, these factors interact across spatial scales to
produce a high degree of spatial and temporal heterogeneity
in HEF. To illustrate the challenges in resolving hyporheic
exchange across scales, we use the River Tern (UK) as a case
study. First, we review previously published research on HEF
in this stream, and then discuss the multi-scale factors that
influence HEF based on the review presented previously in
Sects. 3 to 7.

HEF has been studied in great detail at the sub-reach
scale in the River Tern (Krause et al., 2013; Angermann
et al., 2012; Krause et al., 2011b; Hannah et al., 2009). Re-
sults indicate that spatial variations in surficial geology of
the floodplain and temporal variations in groundwater levels
control local river—aquifer interactions and dictate the rates
and patterns of HEF. Strong correlations between rainfall and
groundwater levels indicate that the river acted as a recharge
boundary, and pumping tests suggest that hydraulic continu-
ity of bedrock with the River Tern is greater at high flows
than at low flows (Streetly and Shepley, 2005). At more lo-
cal scales, Hannah et al. (2009) and Angermann et al. (2012)
found that spatial heterogeneity in HEF is controlled by both
streambed topography and geological strata. Heat tracer stud-
ies identified inhibition of hyporheic flow in peat and clay
lenses below the stream (Angermann et al., 2012). Given this
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Figure 4. Conceptual representation of seasonal variation of hy-
draulic gradient with water stages in an upland environment. Devel-
opment of hyporheic exchange in a riffle considering extension and
contraction of hyporheic sediment.

structure, hyporheic flow paths in riffles did not coincide with
the patterns expected from topography-induced head distri-
butions, and instead seem to be driven by locations of con-
fining peat and clay strata (Angermann et al., 2012). Temper-
ature data indicated that advected surface water or groundwa-
ter control heat transport within the hyporheic zone (Hannah
et al., 2009). Hannah et al. (2009) and Anibas et al. (2012)
showed that the local hydrogeological and geomorphological
context explains the observed seasonal thermal differences
between riffles: increased downwelling at riffle tails during
winter results from greater groundwater influence and high
water stage (Fig. 4).

These results highlight the need to integrate interpretations
of observed rates and patterns of hyporheic exchange with
hydrogeological and geomorphological context. As a start-
ing point, valley type can be used to predict the development
and extent of lateral hyporheic exchange. We illustrate the
generic nature of valley confinement for the River Tern con-
sidering the headwater valley of the Tern at Norton-in-Hales
and including the 150 m reach considered in previous studies
(Hannah et al., 2009). The catchment is low-lying, with aver-
age elevations between 50 and 120 m, and the area is predom-
inantly agricultural, with croplands and pastures accounting
for the majority of the land area (Fuller et al., 2002). The
valley section has an elevation ranging from 91 to 114 m,
a low-channel gradient between 0 % and 0.2 % and is later-
ally unconfined. The River Tern and its tributaries are un-
derlain by Permo-Triassic sedimentary rocks (sandstone and
conglomerate interbedded), which dominate river—aquifer in-
teractions at regional scale (Allen et al., 1997). This perme-
able geology supports unconfined highly, moderately pro-
ductive aquifers characterized by intergranular flows. How-
ever, most of the surficial geology of the catchment is from
the Pleistocene age, ranging from sand and gravel to diamic-
ton, peat, and clay. The thickness varies spatially across the
catchment, with thicker areas in the western part of the catch-
ment comprising up to 30m of till (Streetly and Shepley,
2005). Throughout the length of the selected section, the river
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Figure 5. Examples of reaches of the River Tern analysed for HEF
(Table 2). The river is subdivided into reaches based on their plan-
form morphology (sinuosity units: when the overall direction of
the planimetric course changes) and classified in Table 2. The fig-
ure represents for each reach the main river and the surficial and
bedrock geology in a buffer area of 50 m from the main channel.
Surficial and bedrock geology are represented as greater than the
connectivity within sediment strata and higher the HEF. Vertical
HEEF will be restricted by low permeability units and unconsolidated
deposits and lateral HEF by grain size material, river sinuosity, and
cross-valley head gradients.

is fringed by wet woodland, predominantly Alnus glutinosa.
The bedrock is mainly sandstone and mudstone, whereas the
superficial geology is sand and gravel with some silt, clay,
and diamicton. The valley was divided into reach sections of
850 m and analysed the confinement according to the frame-
work of Fryirs et al. (2016). Some reaches are laterally con-
strained by anthropogenic structures (roads, houses) on one
or both sides (Table 2, Fig. 5). The anthropogenic confine-
ment is most prominent in proximity to the town, where the
active floodplain is artificially disconnected by engineered
structures. Given that the channel planform is mostly mean-
dering and is not constrained by bedrock (Sect. 4.1.2), lateral
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hyporheic flows will likely occur predominately in uncon-
fined areas, where the planform can adjust to its sinuous—
meandering shape (i.e. reaches 1, 4, 5, 6, 7, 8, 9, 10 in Ta-
ble 2). According to the hydrogeology of the area (Sect. 5.1),
hydraulic conductivities are expected to be highly variable as
a consequence of the sediment sorting and HEF will likely
vary within reaches when arenaceous and rudaceous litholo-
gies dominate on argillic and peat sediments (i.e. reaches 2,
4,5,6,8,9in Table 2).

Finally, differences along the general gradient of the net-
work (Sect. 4.2 and 4.2.1) are expected where the conjunc-
tion of increase in riverbed slope, meander bends, and bed-
forms (Sect. 4.1) will likely increase hydraulic head gradients
and induce HEF (i.e. reaches 4, 5, 7, 8 in Table 2). Previous
research suggests that the mosaics of hyporheic exchange in
the River Tern are induced by spatial variations in streambed
topography and sediment permeability and temporal varia-
tions in groundwater recharge. Through the discussion of this
case study, we illustrated that assessment of the geological
and morphological context for the river channel can help to
explain observed patterns in bedform-driven HEF. This work
outlines the opportunity to build HEF scaling relationships
from basic patterns of channel morphology, valley confine-
ment, and hydrogeological properties.

9 Conclusions

Information on the underlying drivers of HEF across space
and time and their processes interactions is essential to pre-
dicting HEF in river networks. This review assembled, for the
first time, studies on drivers of HEF across multiple spatial
and temporal scales, to provide a comprehensive overview
of the mechanisms by which HEF is generated and modi-
fied via interactions between processes. HEF plays such a
significant role in mediating physical, chemical, and ecolog-
ical processes in rivers that considering the HZ in manage-
ment plans could bring major benefits to re-establish the pro-
cesses necessary to support the natural ecosystem within a
catchment. But, the ability to understand the temporal and
spatial dynamics of HEF depends on the holistic perspective
suggested here, which considers co-variations between flow,
slope, valley confinement, catchment area, sediment size, and
river planform and bedform morphology. Direct data on HEF
at a larger scale than reaches are severely limited and are re-
quired to improve methodological and modelling approaches
to HEF and target river management needs (Magliozzi et al.,
2018). By summarizing the factors responsible for rates and
patterns of HEF in river systems, this review provides a com-
prehensive framework which supports process-based hydro-
ecological knowledge of HEF and the development of trans-
ferable approaches to guide river management in including
the HZ in their prioritization and planning (Magliozzi et al.,
2018).
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